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Abstract

The NASA Langley 0.3-m Transonic Cryogenic Tunnel isto be modified to operate with

sulfurhexaflouride (SF6) test gas while retainingitspresent capabilityto operate with

cryogenic nitrogen (N2) test gas. The modified tunnel will provide high Reynolds

number flow on aerodynamic models with two differenttunnel test gases. This

document detailsa study of the SF s gas tunnel performance boundaries, thermodynamic

modeling of the tunnel process, nonlinear dynamical simulation of the mathematical

model to yield tunnel responses, tunnel closed loop control requirements, control law

generation,and the mechanization of the controlslaw on the existingtunnel controller.

Nomenclature

A t cross sectional area of test section, (0.109 m 2)

A r area of recovery valve (normalized)

A s area of SF 6 valve (normalized)

b tunnel circuit loss factor

c sonic velocity in SF6, m/s

• - reference chord for Reynolds number, m

C*v valve flow coefficient

Cp specific heat of SF 6 at constant pressure, kJ/kg K

Cv specific heat of SF 6 at constant volume, kJ/kg K

Cm specific heat of Aluminum 6061, kJ/kg K

Cw specific heat of water, kJ/kg K

C h specific heat of heat exchanger material, kJ/kg K

D fan tip diameter, m

J fan advance ratio

KcndctCOnduction across heat exchanger, kJ/K s

K()
mole

fa t

fas

mr

faleak

faw

constants in context

molecular weight, (SFs = 146.06,N 2 = 28)

testsectionmass flow,kg/s

mass flow of SF 6 into the tunnel, kg/s

mass flow returned to the recovery system, kg/s

mass flow leaked to the atmosphere, kg/s

water flow through the heat exchanger, kg/s



M

M fan

Msp

n

N

Nsp

Ncom

P

Ps

Psf

Psp

Pst

Pb

q

r

R

Re()
aft
S

S

ta

tc

tm

T

Ts

Tsp

Tm

Tw

T h

U

V

Wg

W t

W h

Xr

Mach number in the test section

Mach number in fan annuls (one dimensional)

Mach number set point

fan speed, rad/s

fan speed, rpm

fan speed set point, rpm

fan speed command from Mach loop, rpm

tunnel total pressure, atm

static pressure, atm

SF 6 supply pressure, atm

pressure set point, atm

SF 6 supply tank pressure (storage), atm

suction line pressure, arm

dynamic pressure, kg/m 2

fan pressure ratio

universal gas constant, (8.314 kJ/kg-mol K)

Reynolds number for 0.18 m chord

Reynolds number per foot

time, s

Laplace operator

time constant - Mach number, s

tunnel circuit time, s

tunnel metal time constant, s

total temperature, K

static temperature, K

temperature set point, K

average metal wall temperature, K

inlet water temperature, K

average heat exchanger temperature, K

velocity, m/s

volume of tunnel, m 3

mass of gas in the tunnel, kg

mass of metal in the tunnel, (3000 kg)

thermal mass of heat exchanger, kg

recovery valve stroke, %

H



x s SF 6 charge valve stroke, %

x w water control valve position, %

7 ratio of specific heats

p density, kg/m 3

A skin friction coefficient

# viscosity, N-s/m 2

AT fan temperature rise, K

8 rheostat position for variable frequency generator driving the fan motor, %
m

¢ circular cross section - diameter

concentration of SF 6 (by volume), %

2_h gas - water temperature difference in heat exchanger (conduction mode), K

Abbreviations and Some Software Variable Names

ADC

AGV

AISF

ALQ

ALN

AOSF

AWV

CL

DAC

DACx

DLP

E()
IQ
HE

PLQ

PSF

RSF

SF 6

SFCN

SNRP

TWI

TWO

analog to digital converter

command to nitrogen discharge valves

command to SF 6 charge valve

command to liquid nitrogen valve

command to liquid nitrogen back pressure valve

command to SF 6 recovery valve

command to water valve

centerline

digital to analog converter

voltages from DAC's

pressure drop across screen/honeycomb in the settling chamber

voltages to ADC's

reference voltage signal to variable frequency fan drive Kramer system

heat exchanger

liquid nitrogen supply pressure

SF 6 supply pressure

SF 6 recovery line pressure

sulfur hexaflouride gas

concentration of SF 6 (by volume)

command voltage signal to fan speed system

inlet water temperature of heat exchanger

exit water temperature of heat exchanger



Introduction

Wind tunnel evaluation of scaled aerodynamic models has been the starting point for

design of many of the aircraft that have flown since the first fligl_t of the Wright

brothers. The Similarity laws of Mach number and Reynolds number have allowed

scaling up of subscale model data from wind tunnels to full scale aircraft. The Mach

number similarity corresponding to ratio of inertial forces to elastic forces, is easily

realized in most wind tunnels. However the Reynolds number similarity which is the

ratio of inertial to viscous forces is not easy to realize in small wind tunnels. Lack of

this Reynolds number similarity usually introduces errors in test data due to viscosity

effects at transonic Mach numbers and when vortex dominated flow or separated flow

exists.

The concept of operating a closed circuit wind tunnel with nitrogen gas at cryogenic

temperatures is one solution to realize both Mach number and Reynolds number

similarities.l'2 Cryogenic temperature operation of a tunnel with nitrogen gas increases

the Reynolds number (ocT -1"4) due to increase in gas density (_T-1), decrease in

viscosity (oc T'0"9). At cryogenic temperatures nitrogen behaves as a perfect gas. In

1973 the NASA 0.3-m Transonic Cryogenic Tunnel (TCT) and later the NASA

National Transonic Facility (NTF) were established at Langley Research Center as

cryogenic nitrogen gas wind tunnels to conduct high Reynolds number testing on

aerodynamic models.

Cryogenic tunnels operate at extremely low temperatures to obtain high Reynolds

numbers. These operational temperatures require low temperature qualified

instrumentation which are steadily maturing for routine use. Access to the model's on-

board instrumentation is not as easy as in ambient temperature tunnels because of the

extreme cold. Special procedures are required for servicing the model instrumentation,

or the tunnel must be warmed to ambient temperature. In production wind tunnel

testing, quick and easy access is considered desirable and therefore alternate methods of

realizing high Reynolds numbers in wind tunnels are being pursued.

An alternate method to increase the Reynolds number is to use a high molecular weight

gas at ambient temperatures as the tunnel test gas. High gas density and low specific

heats ratio is characteristic of some heavy gases like sulfur hexaflouride. This gas has a



density about 5.1 times the density of air. This high density yields a high Reynolds

number flow at relatively low fan power because of the low specific heats ratio (7 _- 1.1).

A sulfur hexaflouride gas tunnel will allow use of ambient temperature force and

pressure instrumentation for generating aerodynamic data at high Reynolds number,

alleviating many of the low temperature instrumentation problems associated with
i

cryogenic tunnels.

In 1991, a program was started at NASA Langley to modify tile 0.3-m TCT to use

either cryogenic nitrogen gas or ambient temperature sulfur hexaflouride gas to obtain

high Reynolds number flows. Testing an aerodynamic model with both these gases will

provide a comparison of high Reynolds number testing from two different gas media. It

will also assist in evaluating the validity of sulfur hexaflouride as a wind tunnel test gas

with proper perfect gas like thermodynamic properties which marc yield true

aerodynamic simulation. /

Sulfur hexaflouride (SFs) is an artificially synthesized gas which has been used in the

electrical power industry for a number of years because of its high dielectric strength

and chemical stability.

The dual gas mode of operation (N 2 and SF6) for the 0.3-m TCT requires certain design

changes to be made to the tunnel circuit and to the control system to precisely control

the aerodynamic test parameters in the tunnel flow. The design of closed loop control

system for controlling the tunnel flow parameters involves generating an appropriate

thermodynamic model to represent the tunnel dynamics. A control and modeling study

of the 0.3-m TCT with nitrogen gas was made during the design and commissioning

phase of the tunnel control system. 3'4 A new study has now been performed to analyze

the tunnel dynamics with SF 6 gas and to redesign the control laws for the modified 0.3-

m TCT. In order to generate the dynamical model of the proposed SF 6 tunnel, it is

necessary to estimate its performance boundaries. The tunnel performance estimation

involves calculation of the new circuit loss pattern, test section mass flow, fan power,

fan speed, and other circuit parameters: ..... : : :

This document presents the estimations of the performance limits, the dynamical

modeling of the tunnel process, and an analysis of the closed loop control problems

using nonlinear dynamical simulation for the proposed 0.3-m TCT with SF 6 gas. This



document also presents the necessarycontrol systemchangesrequired to operate0.3-m

TCT with SFfi gas. The controls are expectedto hold tunnel pressure to :t: 0.07 psia,

temperature to + 0.3" K and Mach number to + 0.0015, which will provide the same

quality aerodynamic test data as the cryogenic mode of operation.

Thermophysical Properties of Sulfur Hexaflouride

In order to evaluate the dynamics of the tunnel, a study of the basic thermophysical

properties of SFs gas is necessary. References 5 and 6 detail the properties of SF 6

relevant to this study. This data base has been used to establish the following

simplified explicit identities for use in mathematical modeling and analyses. The range

of interest for this study is 1 to 6 atm in pressure and 290" to 340_ in temperature,

which covers the operating boundaries of the tunnel.

The density of SF 6 can be approximated as:

p= 1842(_+ 0.193{_} 2) kg/m 3

The density of SF 6 gas is about 5.1 times higher than air. A plot of the SF 6 density as

a function of pressure and temperature is shown in figure 1.

The specific heat at constant pressure for SF 6 can be expressed as an approximate

function of temperature and pressure as:

Cp = 221 + 35.01 P + (1.49 - 0.09 P) T J/kg K

A plot of the SF 6 specific heat at constant pressure is shown in figure 2.

O,bviously, SF6 does not behave like a perfect gas since Cp is a function of pressure.

However a 3' can be defined as the specific heat ratio as:

3' = 1.1415 - 0.000167 T + P (0.02748 - 0.0000735 T)

A plot of the SF 6 specific heat ratio is shown in figure 3.



The specific heat at constant volume can be establishedfrom the abovetwo identities

aS:

221 + 35.01 P + (1.49 - 0.09 P) T
Cv = = 1.1415 - 0.000167 T + P (0.02748 - 0.0000735 T)

J/kg K

The viscosity of SF 6 is a function of temperature and can be expressed as:

= 5.49 (T - 14.34) 10-8 N-s/m 2

The following isentropic relations, with real % have been used throughout this analysis

to represent SF 6 gas states as it flows through the contraction and other segments of the

tunnel. It should be pointed out that use of real 7 in isentropic relations is not strictly

valid due to real gas effects such as the imperfect thermal and caloric properties of the

gas.

Ps -- P Ts = T

Sulfur Hexaflouride Tunnel Operation

The schematic diagram of the modified 0.3-m TCT circuit for use with SF 6 gas is shown

in figure 4. It is proposed to work the tunnel with a SF 6 gas purity of about 98%, since

dilution with air is probable in charging and recovering the gas. The first charge of SF 6

into: the tunnel shell is preceded by eVacuation of the tunnel resident air to a near

vacuum. The tunnel pressure is built up by injecting the SF 6 gas derived from liquid

storage. A boiler/evaporator is used to generate SF 6 gas from the liquid SF 6 at a source

pressure of about 200 psig. A pressure reducer-regulator maintains the source supply

pressure to the injection valve. This source is used to control the gas mass flow into the

tunnel through the proportional control valve 3914R. Since SF 6 is costly and is not a

natural gas in the atmosphere, it is not desirable to release the gas to the atmosphere.

Hence_ the gas is confined to a close loop cycle of vaporization, recovery, and

liquefaction. Therefore, the tunnel pressure is decreased by removing the gas into a

recovery system. The control valve 3900R delivers recovery gas into the compressor of

a recovery system. This recovery system liquefies SF 6 gas through a refrigeration



system and the resultant liquid SF 6 is stored for reuse. Therefore, two different valves

are used for SF 6 tunnel pressure control, one for increasing and the second for

decreasing tunnel resident gas mass.

The operation of the tunnel fan results in an increase of tunnel gas temperature because

of adiabatic compression due to the work done by the fan. To regulate the gas

temperature, a heat exchanger will be used in the low-velocity, diffuser segment of the

tunnel. The heat exchanger uses cooling water flow through control valve 3441U for

removing the heat from tunnel gas. In the cryogenic mode of operation, liquid nitrogen

performs the cooling function, hence a heat exchanger is not required. The heat

exchanger will be made using material compatible to cryogenic operation down to 78 K,

allowing it to remain in the tunnel circuit during cryogen!c mode operation, provisi0n

has been made to allow draining and drying of the water lines that will be exposed to

cryogenic temperatures. The heat exchanger introduces extra circuit losses and extra

metal mass in the externally insulated tunnel circuit. The issues involved in sizing the

heat exchanger and its impact on the tunnel Reynolds number are also considered in

this study. The fan speed requirement for operating the SF 6 mode tunnel is a function

of tunnel geometry and the fan advance ratio and is estimated in this study.

The tunnel flow Mach number is controlled by a variable speed motor driving the fan.

The fan rotation creates the necessary pressure ratio for realizing a desired velocity in

the test section. The fan has fixed guide vanes and is surge free for the envelope of

tunnel operations. The fan is driven by a variable speed 2 pole squirrel cage AC

induction motor capable of nearly 7200 rpm where it can deliver a maximum power of

2240 kw. Because of the high density of SF 6 gas the maximum fan speed required in

the SF 6 mode is expected to be less than 2800 rpm.

Tunnel Circuit Variables

Using th'e isentropic flow relations, the approximate test section mass flow can be

expressed as:

_R7 Atfiat = puA t = 1842
PM

kg/s



.[R_'Ts
with u = c M = _-_-_i_ M (approximately 7.95 M _s m/s for "r =1.1)

A plot of the test section mass flow, covering the operational envelope of the tunnel, is

shown in figure 5 as a function of total temperature and total pressure.

Consider a case When the tunnel is charged to a uniform pressure P, under no flow

conditions. Once the tunnel fan is started, the static pressure in the test section reduces

from the original value of P, thereby reducing the mass of gas in the test section. The

excess mass is redistributed to the rest of the tunnel and hence the total pressure P,

increases as a function of Mach number. This change in tunnel pressure is a function of

the tunnel geometry and can be obtained by adding mass in each segment as a function

of test section Mach number and the plenum volume, as shown in Table 1. This has

been estimated as,

circuit_

= 1842 J[ _s'_ dV ~ 1842 _ (1 - 0.033 M 2) 0.3-m TCT-specific identityWg

The tunnel circuit time is the time taken for a molecule to go around the closed circuit

once in the sense of a one dimensional flow. Ignoring the plenum volume, the tunnel

circuit time can be estimated and is shown in figure 6.

The tunnel test section Reynolds number can be estimated by using expressions for

density p, viscosity/z, and velocity u as:

p u_ 1842 Rm_le Ps MRe(SF6) = T = _ _s (Ts - 14.34) 108

__267710 Ps M "_ 106 for "r = 1.1
_s (Ts - 14.34)

Figure 7 shows the Reynolds number envelope of the tunnel for a 0.18 m chord

aerodynamic model. The envelope shows the fan power limit imposed by the existing

motor and the Kramer speed control drive system at 0.3-m TCT. The figure also shows



the loci of candidate heat exchanger design limits based on the capacity of the heat

exchanger. These loci are useful in optimizing the heat exchanger circuit loss during the

initial design trade-off studies.

The test section Reynolds number changes when the SF 6 gas is diluted by other gases,

and for a given concentration of SF 6 of _ (by volume) assuming dilution only by air: 5

Re(mix) = {1 - 0.00699 (100-x)} Re(SF6)
for 90< x <100 %

Tunnel Geometry, Circuit Losses, and Fan Power

The 0.3-m TCT geometrical details for the proposed modifications for SF 6 operation

are shown in Table 1. Details of the eleven segments constituting the closed circuit

tunnel with their cross section, length, volume, local Mach number (when test section is

at Mach 1) and the circuit loss factor are presented.

Table 1

Tunnel segment Cross section Length Volume M local

m¢ or area m m 3 (Mtest =1.0)

Loss

APsea

qtest sec

Fan nacelle/vanes 0.762 4.05 1.67

HE inlet diffuser

Rapid diffuser to HE

Heat Exchanger

HE exit diffuser

Bigend corners/crossleg

Settling chamber/screen

Contraction

Test section*

High speed diffuser

1 & 2 corners/crossleg

Fan annulus

Total

0.762-0.978

0.978-1.22

1.22

1.22

1.22

1.32

1.32 ¢-0.109 m 2

0.109 m 2

0.109m2-0.762

0.762

0.762/0.413

2.44

0.41

0.92

1.22

3.29 CL

1.75

1.27

1.93

4.88

3.35 CL

1.00

26.51 CL

1.43

0.39

1.067

1.422

4.00

2.40

0.579

0.210

0.99 m 3

1.52 m 3

0.5 m 3

16.18 m 3

0.1448 0.009

0.111

0.066 av

0.0560 0.025

0.0560

0.0560

0.0464

0.1559 av

1.00

0.4716 av

0.1448

0.2072

0.160

0.005

0.004

0.009

0.040

0.054

0.014

* The plenum pressure volume of 0.6 m 3 (not participating in flow) is not included

10



The test section plenum volume of about 0.6 m 3 is connected to test section pressure to

prevent pressure loading across the flexible walls, and is treated as a pressure volume

but not a flow volume. The local flow Mach number in each segment of the tunnel has

been estimated using the continuity equation starting from the mass flow and local cross

sectional area. The real value of 7 for SF 6 has been used in the estimation.

M rht iT

1842 R_p A

=0

This equation has been solved for the given mass flow, total pressure, and temperature

at various cross secti°nal areas along the tunnel center line to arrive at the local one

dimensional flow Mach number. The tunnel circuit loss factor has been estimated

segment by segment and normalized to the test section dynamic pressure. These

estimates are based on procedures detailed in reference 7. A skin friction coefficient of

A=0.007 (for average Reynolds numbers of 30 million/diameter on internal surface) has

been assumed for the calculations.

The heat exchanger is design is based on a nominal allowable flow pressure loss across

the heat exchanger of 0.70 psi at P=6 atm and M=0.8. This corresponds to a circuit

loss factor of 0.025. 8 The loss factor due to heat exchanger is inversely proportional to

the design value of the water-gas temperature difference allowed at maximum power.

Reducing this temperature difference results in higher tunnel circuit loss factors. The

heat exchanger circuit loss from the present design choice accounts for 16-18% of the

total tunnel circuit losses. In the settling chamber, the screen losses are assumed to be

about 1 to 2 times the local dynamic pressure.

The dominant circuit losses appear to occur in the high speed diffuser, the test section

and the heat exchanger. The fan pressure ratio for steady state operation at test section

Mach number M is:

r= 1 +bM 2 whereb=0.160

The 0.3-m TCT circuit losses under cryogenic operation have been estimated and

quantified. 9 In reference 9, the fan pressure ratio in the cryogenic mode of operation

11



wasextensivelymeasuredand analyzedduring the early 1980's. The fan pressureratio

was curve fit as a function of the test section Reynolds number Rft. Using the
expressionfrom reference9, the 0.3-m TCT circuit loss factor can be estimated for a

typical Reynolds number of about 50-60 million/foot as:

r = 1.001 + 0.8205 M 2 Rft-0"096 ,-, 1 + 0.150 M 2

This circuit loss factor of 0.150 (Circa 1984) WaS lowered with the introduction of a

smaller 0.109 m 2 test section and the new improved diffuser (Circa 1986). Assuming 7-

8% improvement due to these changes, the unmodified tunnel circuit loss can be

estimated at 0.138. This circuit loss factor is consistent with the present estimate of

circuit losses for the modified configuration of 0.160 at 50 million/foot Reynolds

number. The loss factor of 0.160 accounts for the inclusion of the new heat exchanger,

and modification of the old, low-speed diffuser duct. The modified tunnel fan pressure

ratio can be expressed as:

r=1.001+ 0.8765 M 2Rft-0"096 __ 1 +0.160M 2

After the tunnel modifications for the SF 6 mode, future cryogenic operation will include

the extra circuit losses due to the new heat exchanger. Hence, the performance

envelope of the cryogenic mode is likely to change. The fan power consumption for a

tunnel circuit with known circuit loss factors can be estimated using the fan

temperature ratio by invoking isentropic relations. Since cooling occurs after

compression, the fan outlet temperature is T-I-AT, and hence:

-y

r= =l+bM 2

7-1

1}_- t 4/

Fan power = fia t Cp AT ~ Kf P M3 _
- (_+I)

where Kf = 1842 Im_eleAt Cp (_-_)b

12



Figure 8 shows the fan power as a function of tunnel Mach number and pressure. In

estimating the power, a constant value for b has been assumed. Value of b varies with

tunnel flow Reynolds number, but its effect has been ignored. Figure shows the speed

based power limit on the 2240 kw, 7200 synchronous rpm water-cooled, squirrel-cage 2-

pole induction motor, working at 35 V rms/Hz, which limits the performance envelope

of the tunnel from an operational point of view. The effect of the fan power limitation

and the heat exchanger capability, as a set of power loci, on the tunnel Reynolds

number is illustrated in figure 7. The heat exchanger and its cooling water temperature

determine the maximum fan power that can be used while still retaining the ability to

regulate tunnel total temperature.

Fan Speed

The 0.3-m TCT fan has twelve blades with seven fixed inlet and outlet guide vanes.

The fan pressure ratio is controlled by the fan runner speed. The fan advance ratio, as

existing, is estimated for cryogenic nitrogen operation from a recorded case. 4 The

tunnel was operated at M=0.760, P=68 psia, and T=230 K, and the resulting fan speed

was found to be 4504 rpm. For this test the tunnel had a Cast-10 model in the test

section and the flexible walls were streamlined. The fan tip diameter is 0.762 m and

the fan boss diameter is 0.413 m. From these data, the fan annulus one dimensional

flow Mach number is estimated as 0.189 by solving the mass flow equation with

nitrogen molecular weight of 28, specific heat ratio "y of 1.4, and density of 338.9 _.

The fan advance ratio is:

}c Mfan _ Mfa n
= 0.3083

By assuming that the flow rotation imparted by the fan to be negligible, the fan

advance ratio J can be considered as an invariant parameter of the tunnel applicable for

both test gases. Utilizing the J estimated from the cryogenic nitrogen mode, the mass

flows and local Mach numbers around the circuit can be determined for the SF 6 mode.

13



Table

Temperature = 31

Test section Test section

Iht, kg/s Mach no.

2

K, Pressure = 6 atm

Fan annulus[ Fan speed

Mach no. rpm

323

320

315

310

300

290

280

240

200

161

120

80

40

0.96

0.89

0.835

0.795

0.733

0.6838

0.6414

0.5079

0.4027

0.3152

0.228

0.1497

0.0742

0.2072

0.2048

0.2014

0.198

0.1915

0.1848

0.1782

0.1521

0.1263

0.1018

0.0753

0.0501

0.025

2349

2322

2284

2246

2172

2096

2021

1726

1433

1155

855

569

283

The relation between the test section Mach number and the fan annulus Mach number

is nonlinear. Table 2 provides the tunnel mass flow and corresponding test section

Mach number/fan annulus Mach number, and, finally the estimated fan speed for the

SF 6 test gas. This table has been obtained by solving the continuity equation for a

given tunnel mass flow, temperature, and pressure for at the test section and the fan

annulus areas (test section 0.109 m 2 and fan annulus of 0.762 m tip diameter and 0.413

m boss diameter).

M

(7+1)

(1 +(-_JM2) 2(7-1)

t #

1842 R,II_7, P A
_mole

-0

N

TsMf n
_-JD

14



Figure 9 shows the fan speed as a function of Mach number. It is basically independent

of tunnel pressure. Under steady state conditions, the fan speed Mach number relation

can be expressed as (using a quadratic regression curve fit):

N = 251 M (1 - 0.474 M)

The fan imparts a momentum increase to the flow which provides the test section Mach

number M. The 0.3-m TCT has solid adaptive wall system, and hence tunnel flow does

not breathe into the plenum in a dominant manner as in a slotted or porous wall test

section. The dynamics of the Mach number can be expressed as:

dM_ N M
--aT- t2- where Kn = 251 (1 - 0.474 M)

The fan drive electrical system, consists of a field-controlled DC generator driving a

DG motor coupled to a variable frequency alternator. The transfer function of whole

system is: 3

N 1

]_sp=l +0.56S+0.2S 2

This transfer function model was experimentally determined from time response records

of the fan speed perturbation during cryogenic tunnel operation.

The low fan speed requirement for SF 6 limits the amount of power that can be derived

from the fan based on motor current limitation. The motor can deliver a maximum

power of 31.1 kw/100 rpm. This limits the SF 6 tunnel performance boundary as already

discussed and illustrated in figure 8.

Tunnel Pressure and Temperature Dynamics
i

In order to operate a closed circuit tunnel with SF6, mass flow into "and out of the

tunnel is necessary to incorporate pressure control feature. The operation of the fan

results in adiabatic compression of gas and the heat from compression is released into

the tunnel gas. Mass enthalpy interaction occurs continuously in the tunnel, affecting

the tunnel pressure and temperature states. The dynamics of this interaction can be

15



studied using the equations of state, energy, continuity, heat transfer from tunnel metal

shell to gas, heat transfer from gas to cooling water through the heat exchanger,

adiabatic compression heat release, a simple, surge-free fan map, and a few related

identities based on the thermophysical properties of the gas. The SF 6 inlet mass flow,

rhs, recovery flow, tilt, cooling water mass flow, law, and fan speed, N, are used to

control the tunnel states to desired values. In the lumped modeling approach, the

mass enthalpy interactions are assumed to control the average tunnel state and, hence,

the total pressure and temperature in the settling chamber. In this model, the spatial

distribution of the total gas states around the circuit is based on the average state less

local losses, except for the segment between the fan and the heat exchanger. From the

ideal gas equation of state, the pressure rate in the tunnel can be expressed as:

dP P dT P

d--'t-=T _ + Wgg (rhs - Ihr - rhleak)

The energy components in the tunnel are from enthalpy movement in and out of the

tunnel due to SF 6 gas mass charging-recovery, adiabatic compression of the tunnel gas

flow at the fan, tunnel metal wall to gas convection heat transfer, and the heat transfer

in the heat exchanger from gas to heat exchanger body mass. The temperature rate in

the tunnel can be expressed as:

dT
1 {KfP. M3_--TWgCv ('r + 1) + (ms - mr - rhleak) CpT

(1+('@_)M2)2('r-1)

T-T m
- WtC m. Cpgnt(T+ -_ - Th -_h)}

The heat exchanger heat transfer involves the interaction between gas mass flow, heat

exchanger body conductivity, and water mass flow. Under steady state tunnel

conditions, the SF 6 gas inlet total temperature to the heat exchanger is T+AT and the

gas exit temperature is T. Therefore the average gas temperature in the heat exchanger

is (T+-_). The heat transfer from gas to water involves conduction through the tube

walls and a change in the heat exchanger body mass temperature. T h is the average

heat exchanger body mass temperature, the gas side surface temperature is Th+6h and

water side surface temperature is Th-_h, the temperature difference across the tube

walls is 2_h. This temperature difference across tube wall accounts for conduction
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mode heat transfer from gas to water. The difference between heat entering and leaving

the heat exchanger dictates the heat exchanger body temperature dynamics. The heat

exchanger metal mass thermal dynamics can now be determined as:

WhCh--dT = Cpfa t - _

The quantum of heat entering the heat exchanger in the conduction mode is a function

of the temperature difference across the heat exchanger tube walls 26h.

1 {Cpfat (T+ _ -Th-$h ) +Cw faw(T h- _h-Tw)} = Kcndct(2_h)

The temperature difference between the gas and water sides of the heat exchanger can

be determined by simplifying the above expression.

,h = 1 {Cpfat(T+_4__Th ) +Cwfaw(Th_Tw)}4Kcndc t + Cpfa t + Cwfaw

From the design data (based on 5.2* K temperature rise of 32 kg/s, 291.5" K water flow

with tunnel at 319.4 K, M=0.8 P=6 atm), Kcndc t for the heat exchanger is estimated

as 29 kJ/s K. 8

The time constants associated with heat transfer from the gas to the heat exchanger

vary as a function of tunnel mass flow fa t. Typically, under equilibrium conditions,

the fan raises the gas stream temperature by AT and the heat exchanger cools the

stream back to T. The quantum of heat removed by water flow equals the heat

exchanger heat flow. The water-gas heat exchanger is made of _finned copper tubing

and its thermal mass is dominated by copper w_ose specific_heat is: 8

C h = 385.4 J/kg K

The water flow throttling control valve is located downstream of the heat exchanger and

uniformity of the temperature is not expected to be as good as when a constant mass

flow, variable water inlet temperature concept is used for the heat exchanger as in the

NTF.
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The 0.3-m TCT is an externally insulated tunnel made out of Aluminum 6061 which

has a specific heat which varies with temperature as:

Cm = (5.5 T - 0208 T 2) J/kg K

The tunnel metal wall to gas heat exchange can be expressed by the identity:

dT m _ (T - Tm)

tm

The tunnel gas to metal heat transfer is a function of gas density and convection rate

occurring at the turbulent boundary layer throughout the internal surface of the tunnel

due to the motion of the gas along the walls. This has been formed as a time constant

that is inversely proportional to mass flow fiat and has been experimentally validated in

the cryogenic mode of operation as:

Km

t m = T0.12 (P M)0. 8 s
0.3-m TCT-specific identity

Sulfur Hexaflouride Mass Flow Control

The mass flow of the SF 6 gas into the tunnel and out to the recovery system is

controlled by proportional control valves. The valve stroke-area is modeled to have a

2% dead band near zero a with nonlinear stroke-area law. The inlet to the tunnel is

controlled by one of the unused liquid nitrogen injection valves with a full open valve

coefficient C* v of 14. For SF 6 at a dens!ty ratio of 5.1, the mass flow in to the tunnel

can be expressed as.

rh s = 0.1811 _T f C*v kg/s choked flow

However, in the proposed design the maximum rate of evaporation from the SF 6

boiler/evaporator is limited to 0.274 kg/s. The inlet valve is oversized for this mass

flow, requiring only a partial opening to generate the full mass flow. The maximum

opening can be limited in the control software appropriately.
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Sulfur hexaflouride gas is recovered through a recovery system with a

compressor/liquefaction unit. The compressor suction line is connected to the tunnel

exhaust through a proportional control valve with a full open valve coefficient C*v of

7.8. Depending upon the tunnel operating pressure, the flow through this valve can be

either choked or unchoked. The equations for mass flow removal are:

thr= 0.1811 _T C*v kg/s for P > 1.5 Pb (choked flow)

C*v kg/s for P < 1.5 Pb (unchoked flow)

rhleak = 0.02786 _T kg/s for P > 1.5 atm (equivalent to 0.1 inch diameter orifice)

The proposed compressor for the recovery system has a maximum capability of 0.137

kg/s mass flow. 8 A valve of C*v=7.8 has been used to provide a fine resolution and

closed loop control for low mass flows at higher pressure loss. Another valve of C*v=10

is used in parallel under openloop control during shutdown to evacuate tunnel and store

the SF 6 gas rapidly.

Control Laws

The tunnel dynamics are highly coupled and nonlinear in nature. The SF 6 medium

tunnel does not have complex dynamical modes and the control problem is basically one

of quasi-statically balancing the nonlinear energy terms through the control inputs.

Since the mass enthalpy control terms are relatively small, the tunnel response time

tends to be very slow. In order to obtain good quality aerodynamic data, the stability

criteria in tunnel control is to control pressure to :l: 0.007 psia, temperature to + 0.3 ° K

and Mach number to ±0.0015 of the set point values. The control laws:are developed

from analysis and nonlinear simulation and are discussed in the following sections.
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Tunnel temperature control

The tunnel gas temperature control is realized by cooling water mass flow control under

closed loop control. The basic equations which control the tunnel gas temperatures

are:

dTm_ (T-Tm)

tm

p M3_-T_- -W---_dT_ 1 Kf (7+ 1) +(flas - flar - flaleak)Cp T

_ - WtC m t m

dTh 1 {Cpflat(T+___Th_6h)_ Cwflaw(Th_ 6h_Tw)}- WhCh

sh = 1 {Cprht(T+____Th) +Cwrhw(T h Tw)}4Kcndc t + Cpfla t + Cwflaw

The model is nonlinear for the temperature control variable flaw, and hence control law

synthesis using classical linear control methods are not feasible. The control law has

been established through dynamic simulation. For a temperature set point Tsp, the

control law will be gain scheduled as a function of tunnel mass flow, which dictates the

rate of heat removal.

rht {(T- Tsp)+0-1 / (T Tsp)}flaw = -?g

or as valve position, the control law will be:

Xw = _'_ (T - Tsp) +0.1 / (T - Tsp )

0 < flaw < 32 kg/s

0 < x w < 100 %

where 0% command corresponds to 4 milliamperes and 100% command corresponds to

20 milliamperes drive for the pneumatically driven valve positioner. A linear flow-

current transfer function has been assumed for the modeling of mass flow. A small dead

band type nonlinearity exists in most valves followed by a nonlinear area-stroke

relationship. This nonlinear area-stroke model will be introduced in the nonlinear

dynamical simulation to study the performance of the tunnel.
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Tunnel pressure control

The total pressure control equation for the tunnel is:

dP P dT %-_- = T _ + (ms - rhr - rhleak)

The control variables in the above equation are rh s for pressure increase and rh r for

pressure decrease. Hence two separate valves (C*v=14 for the charging valve and C'v=

7.8 for the recovery valve) will be used for bipolar control. The pressure control

dynamics are nonlinear with coupling from the temperature control loop. Again,

through simulation, to be discussed in the next section, the pressure control law has

been formulated as:

Xs =10 {(Psp-P ) +0.03f(Psp-P)dr} where 0< x s <100%

rh s=0.2535 A s where As=0for0<x s<2andA s= for 2< x s <I00

At about 10 arm infinite volume source pressure, the full open mass flow will be 2 kg/s.

However, the maximum boiling rate of the supply system is 0.274 kg/s and hence, to

obtain linear mass flow control, the maximum Charge valve opening may have to be

limited to 15 - 20% for linear control.

Xr =10 {(Psp-P) +O.03/(Psp-P) dr} where O<xr< 100%

= ( Xr _1.7
P A r where A r 0 for 0< x r <2 and A r = _,1-_/ for 2< Xr <100rh r = 0.1811

These two control laws work in tandem on each valve driving the position on the basis

of 4 to 20 milliamperes drives for the pneumatically operated valve positioners. The

valve stroke-area is modeled to be a 2% dead band with nonlinear area law.
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Test section Much number control

The tunnel Much number control is essentially same as the control law discussed in

reference 4, and is based on the fan speed Much number relation of:

N = 251 M (1 - 0.474 M)

The tunnel is on a fan speed control loop where the rheostat

frequency generator is adjusted by the control law:

driving the variable

0 = 0.6 ( N- NSp ) + f (N- Nsp) dt

where 0 and If (N- Nsp ) dt I are limited in each computation such that maximum fan

acceleration/deceleration is less than 50 rpm/s.

For closing the Much number control loop, the test section Much number is estimated

from the total and static pressures from isentropic relations as:

when 3,=1.1,

In the control laws, the value of "r is estimated from the measured P and T. The Much

number control law generates the fan speed command using only a proportional law.

An integration in the Much number control loop would result in a double integration in

the fan speed control loop, leading to an undesirable overshoot. Hence, no integration is

required in Much number control loop.

Ncom = 251_1T (1-0.454M) ( M-Msp ) + N

The modeling of the gas flow system may require changes depending upon the

performance of the boiler/evaporator, valve coefficients, line losses, and recovery

compressor performance, resulting in the need for loop gain adjustments during

commissioning. In mechanizing these integral control laws, appropriate mini-max clips

are essential to prevent integral windup out of range in the controller software.
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Dynamical Simulation Studies

Nonlinear Modeling Equations

The differential equations representing the tunnel behavior form the basis for a

nonlinear simulation of the tunnel dynamics for various control inputs covering the full

operational envelope of the tunnel. A nonlinear simulation tool, capable of solving

nonlinear differential equations, has been used for this work. I0 The differential

equations, control laws, and identities have been solved for time variable using a Runge-

Kutta-Fehlberg 4/5 order integration routine and the time trajectories for the tunnel

dynamical responses have been obtained, over a period of 1500 seconds. The simplified

numerical version of the equations used are:

Wg = 29803 P (1 - 0.033 M2)

-r= 1.1415- 0.000167 T + P (0.02748 -0.0000735 T)

Cp = 221 + 35.01 P + (1.49 - 0.09 P) T

Cm = 5.5 T - 0.008 T 2

t m = T0.12_140)0.8

rh t = 1800.4
PM

(_+i)

._ (1+(_M2) 2(*-1)

power = 15.95 P M3 _
(_+I)

AT = 0.150 T M 2 (Z_)

C h = 385.4

wallheat = 3 (T- Tm) Cm
tm
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dP ( rhs - ri_r-Ihlea_) ÷ _ _tT

dT m T - T m

dt tm

dT power - O.O01Cp(T+ _4_ _ Th _ _h)fnt _ wallheat

d--t-= 0.001Wg Cv

dT h _0.001Cprht(T+ -_ - T h - sh) - 1.28(T h - 6h - Tw) Xw

42.9

_h = 1 _I0.001Cpfnt (T÷ -_ -Th) + 1.28 xw(Th-Tw) }116÷0.001Cprht+l.28 x w

Xw = v_--_{(T- Tsp)+0.1/(T- Tsp)} with minimax/windup clip 0 < Xw < 100%

Xs= 10 {(Psp-P)+0.03/(Psp-P) dt} with minimax/windup clip 0 < Xs <100%

_T f ( Xs / 1.7rh s = 0.2535 As where As=0 for 0<Xs<2 and A s = _,1-_} for 2 <Xs<100%

Xr= 10 {(Psp-P)+0.03/(Psp-P)dt} with minimax/windup clip 0 <Xr <100%

P Ar where Ar=0 for 0<Xr<2 and Ar = (1-_0) 1"7 for 2 <Xr<100 %fiar = 0.1811 :_

P for P > 1.5 atm
faleak = 0.02786 :_

Simulation results

A number of simulation runs were performed and the control loops were tuned through

a number of iterative runs to obtain good responses. _ The results of the dynamical

simulation of the tunnel with the control system for three loops, in the form of time

trajectories, are presented in figures 10a to 10k. Each figure shows six time-trajectories

covering a period of about 1500 seconds. The tunnel total pressure PI temperature T,

and Mach number M, are shown adjacent to their dominant and corresponding control

inputs namely SF 6 gas valves strokes (inlet and recovery), water valve stroke, and fan

speed.
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Figure 10a shows the tunnel time response simulation for the initial conditions of Mach

number M=0.8, total pressure P=3 atm, and all temperatures (heat exchanger, water,

tunnel structure, and gas) at 303 K. The pressure set point is Psp=6 atm and

temperature set point is Tsp=319.4 K. The tunnel takes nearly 1100 seconds to build

up pressure from 3 atm to 6 atm, consistent with the maximum mass inflow rate of 0.27

kg/s. The charging valve remains full open until the tunnel pressure reaches 6 atm. An

oscillatory dynamic involving both charge and recovery valves hold the pressure to 6

arm. After reaching steady state pressure, the charge valve remains slightly open to

accommodate for tunnel gas leaks. The tunnel gas temperature, exit water

temperature, and average structural temperature are shown in the temperature plot.

The tunnel gas temperature quickly increases from 303" K to 319.4" K and overshoots,

but the water valve opens to maintain the gas temperature at the temperature set

point. The exit water temperature remains about 8" K below the gas temperature at

the start and grows to 1T K at full power. The tunnel walls take nearly 900 seconds to

reach the gas temperature. The water flow control valve steadily opens as the tunnel

pressure/power is increased. The valve is nearly fully open at P=6 atm, M=0.8, and

T=319.4" K. Since fan speed and Mach number are held constant, no dynamics is

evident. All the three loops are stable.

Figure 10b shows the simulation of the tunnel dynamics for a similar situation as in

figure 10a except that the tunnel starting total pressure is P=5 atm and the set point is

Psp=4 arm. The pressure is reduced by the recovery system at mass flow rate of 0.137

kg/s. The tunnel takes nearly 800 seconds to decrease the pressure to 4 atm. An

osciIlatory dynamics settles the pressure to the final value. The temperature dynamics

is similar to the previous case, except that the water valve trajectory is different. The

exit water temperature is about 12"K lower than the gas temperature. The metal wall

heat absorption keeps the water valve steady at about 35% open. This is due to

reduced fan power at the lower final value of the pressure.

Figure 10c shows the tunnel state trajectories for initial conditions of M=0.30, P=1.9

atm, and all initial temperatures at 303_K. The pressure set point is Psp=2 atm and

temperature set point is Tsp=309.4_K. The pressure settles to final value within 50

seconds, both valves being active. Due to low fan power, the difference between the

exit water temperature and the tunnel gas temperature is very low; both trajectories
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almost overlap each other. The temperature reaches 309.4 ° K in about 150 seconds and

the water valve opens to allow small amounts of water flow. These trajectories

demonstrate the control at low power conditions.

Figure 10d shows tunnel state trajectories at low fan power at a higher tunnel pressure

than figure 10c. The simulation starts with a initial conditions of Mach number at 0.3,

pressure of 6 atm, and all temperatures of 303 ° K. The control set points are 5.5 atm

and 309.4" K. At this relatively low fan power, the tunnel takes nearly 100 seconds to

reach the desired temperature. The difference between gas and heat exchanger

temperature remains low and again the trajectories almost overlap each other. The

tunnel pressure drops at the recovery system mass removal rate and settles after 400

seconds.

Figure 10e and 10f show simulations where the Mach number set point is programmed

in an increasing direction at constant temperature of 319.4 K. This type of sweep is a

typical Reynolds number/Mach number sweep performed during an aerodynamic test.

The Mach number is swept from 0.4 to 0.8 in three steps with a dwell time of about 400

seconds. The dwell is intended for tunnel conditions to settle and for aerodynamic data

acquisition after streamlining of the tunnel flexible walls. The Mach number is changed

from 0.4 to 0.6 at 400 seconds and changed again from 0.6 to 0.8 at 900 seconds. In

figure 10e, the pressure is kept constant at 3 arm throughout the test and the tunnel

Reynolds numbers correspond to 9.8 million, 13.35 million, and 15.72 million (chord of

0.18 m) for M=0.4, 0.6, and 0.8 respectively. The gas temperature reaches the set point

of 319.4" K in about 200 seconds. The exit water-gas temperature difference grows from

a small value at M=0.4 to about 8° K at M=0.8. The tunnel structure takes about 1400

seconds to reach the gas temperature. The water valve is initially closed for about 200

seconds to allow the gas temperature to increase, and gradually reaches 20% open

condition at M=0.8. Figure 10f shows a similar simulation where the operating pressure

is 6 atm, and the corresponding Reynolds numbers are approximately 19.6 million, 26.7

million and 31.44 million (chord of 0.18 m) at M=0.4, 0.6 and 0.8 respectively. The

water valve is fully open when the Mach number reaches 0.8. The exit water

temperature drops by nearly 16° K at this power. The pressure and temperature

trajectories are consistent with power effects.
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Figures 10g and 10h shows similar trajectories for a descending Mach number sweep at

two pressures of P=5 and 2 arm, for a constant temperature set point of 319.4" K. In

this aerodynamic test the Reynolds numbers correspond to 16.3 million, 22.3 million,

and 26.2 million (chord of 0.18 m) for M=0.4, 0.6, and 0.8 respectively. The tunnel

process and controls demonstrate the time required for the tunnel to settle before data

acquisition can start. Figure 10g demonstrates the trajectories for 5 atm total pressure

where as the figure 10h shows a similar sweep for 2 atm total pressure.

Figure 10i shows an ascending Mach number sweep of M=0.4, 0.6, and 0.8. In the

middle of this sweep the temperature set point has been changed from 315.4 ° to 319.4_(

at a fixed pressure of 1.8 atm and a Mach number of 0.6. The Reynolds number

changes with Mach number and with temperature, and the latter can be used for fine

tuning the Reynolds number. The responses demonstrate the temperature control

effectiveness of the closed loop control system using the water cooling system. The

temperature settles within a short time, with a minimum overshoot.

Figure 10j shows a set of tunnel trajectories in which the Reynolds number has been

changed using pressure at Mach numbers 0.5 and 0.8. The tunnel temperature is at

319.4" K. Reynolds number is varied from 11.5 million to 13.4 million at M=0.5,

whereas at M=0.8 the Reynolds numbers varied from 15.3 million and 17.8 million

(chord of 0.18 m). The aerodynamic data acquisition, including the wall adaptation,

can be performed in this time period of about 1500 seconds. Though the valve

movements appear to be large, the tunnel pressure is held within the band of + 0.05

atm initially, and within 0.005 arm after settling, as illustrated in figure 10k. The

responses in figure 10k are duplicates of figure 10j with an enlarged vertical scale for

pressure and gas valve positions. The pressure and gas valve area plots illustrate the

effects of the nonlinear area-stroke relationship on the control of the tunnel.

These simulations demonstrate the typical characteristics of the water cooled SF 6 gas

tunnel, and the adequacy of the control laws over the full envelope of the modified 0.3-

m TCT operations. Generally, the tunnel states move slowly due to low rates of mass

addition and removal and, hence, require relatively long settling times for pressure

changes. The control laws are reasonably robust, but may require gain tuning during

commissioning due to uncertainties in the gas flow and water flow modeling. These

simulations confirm the closed loop control laws to be mounted on the controller.
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Control Law Mechanization Issues

The control laws derived in this analysis are to be mechanized on the existing

microprocessor-based cryogenic-mode controller hardware described in references 4 and

11. Since the option of running either the cryogenic mode or the SF 6 mode is to be

provided, the following additions are proposed. The existing hard disk controller

memory will be used to house two programs, one for control of the cryogenic mode, and

a second new program for the SF 6 mode of operation. The second program is based on

the analysis performed in this document. During the tunnel operation, the appropriate

code is loaded to the Random Access Memory (RAM) and the Central Processing Unit

(CPU) performs the control computations and functions through the real-time devices.

The Table 3 lists the sensors and actuators for both modes of 0.3-m TCT operation.

Table 3

Input name Sensor Range Volt/amps

E(1) PP (P) 0-88 psia 0-5 VDC

E(2) PS (Ps) 0-88 psia 0-5 VDC

E(3) IT (T) 78-342 g 0-5 VDC
E(4) TMWL(Tm) 78-342 K 0-5 VDC

E(5) FRPM (N) 0-6400 rpm 0-5 VDC

E(6) PLQ 0-300 psig 1-5 VDC

E(7) DLP 0-5 psid 0-5 VDC

E(8)
E(9) PSF (Psf) 0-300 psia 0-5 VDC

E(10) RSF (Pb) 0-100 psia 0-5 VDC
E(ll) TWI (Tw) 273-330 K 0-5 VDC

E(12) TWO (Wh) 273-330 K 0-5 VDC
E(13) SFCN (to) 50-100% 0-5 VDC

E(14) PST(Pst ) 0-500 psig 0-5 VDC
E(15)
E(16)
Output name Actuator Range drive

DAC(1) ALQ 0-100% 4-20 ma

DAC(2) ALQ 0-100% 4-20 ma

DAC(3) ALN 0-100% 0-5 VDC

DAC(4) AGV1 0-100% 1-5 VDC

DAC(5) AGV2 0-100% 1-5 VDC

DAC(6) SNRPM 0-6400 0-5 VDC

DAC(7) IQ Fan ref 5 VDC

DAC(8) -
DAC(9) AISF 0-100% 4-20 ma

DAC(10) AOSF 0-100% 4-20 ma

DAC(ll) AWV 0-100% 4-20 ma

DAC(12)

Existing sensors for cryogenic tunnel

and all except PLQ will be required

for SF 6 gas operation also

New sensors for SF 6 gas tunnel
( New ADC Hardware)

Existing actuator drives for

cryogenic tunnel. Only SNRPM/IQ

will be used in SF 6 gas operation

( SNRPM = 500-2500 rpm for SF6)

New actuator drives for the SF 6 -
mode of operation

(New DAC hardware)
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The Table 3 also lists existing and proposed software variable names. From the seven

cryogenic mode tunnel transducers, six will be required and used in the SF 6 mode. In

addition a new set of six sensors will be required for the SF 6 mode. The cryogenic mode

generates seven commands to drive the actuators for controlling the tunnel. Only two

of these seven, corresponding to fan speed control, will be necessary for the SF 6 mode.

The other five drives will be set to zero during the SF 6 mode of operation. In addition,

three new actuator drives for the SF 6 inlet valve, recovery system valve, and the water

valve will be needed. All the new valves will be 4-20 milliamperes coil actuated flapper-

nozzle driven, diaphragm operated, pneumatic valves. When reverting to the cryogenic

mode of operation, the cryogenic mode software will be modified to signal zero currents

to the SF 6 mode actuators. In each mode a sensor signal check module is used for

emergency shutdown. The unused sensor signal check will be bypassed.

At the controller hardware level, two more real time devices will be necessary for the

microcomputer. First is an analog to digital converter for the six new sensor channels

with a 16 bit (1 in 65536) resolution requirement, so as to be compatible with the rest of

the cryogenic mode controller. Second is a digital to analog converter for three new

actuator channels of 12 bit (1 in 4096) resolution providing 4-20 milliamperes range

signals to drive the SF 6 valves and water valves.

The structure of the SF 6 mode control software will be similar to the cryogenic mode

software. The software will consist of a screen-format one-pass code, analog-to-digital

conversion module, module for control laws for the three loops, key-board read module

servicing one command per cycle, actuator drive, digital-to-analog conversion module,

screen update module, and a sensor signal range based emergency module, all working

in an endless loop. The compiled-executable code, after extensive testing for numerical

robustness, will be mounted on the microcomputer controlling the 0.3-m TCT.

This code is expected to take about 100 milliseconds to execute a cycle, as in the case of

the existing cryogenic mode software. A view of the proposed controller display layout

is shown in figure 11. The tunnel will have provision for Pressure or Reynolds number

control, Mach number control, and Temperature control. Using the information from

the SF 6 concentration _¢ sensor, the Reynolds number estimation will be corrected for

dilution of the SF 6 gas with air. A system shutdown will be necessary for changing the

gas modes on the controller in order to invoke the proper software for the controller.
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Conclusions

A study of the various performance and tunnel control issues related to the proposed

modification of 0.3-m TCT to operate with sulfur hexaflouride (SF6) gas are presented

in this document. Utilizing the thermophysical properties of SF 6 gas and the modified

tunnel geometry, a thermodynamic lumped mathematical model of the tunnel process

has evolved. The various tunnel performance parameters like mass flow, circuit time,

fan power, fan speed, and flow Reynolds number boundary have been estimated. The

0.3-m TCT modified for SF 6 operation will be capable of providing about 30 million

Reynolds number per 0.18 m chord up to about Mach number of 0.8 at total pressure of

6 arm. The fan speed/heat exchanger limits on the Reynolds number envelope have

been analyzed.

Control laws for closed loop control of the SF 6 tunnel states have been generated to

provide control accuracy of +0.07 psi for pressure, =1:0.3_I{ for temperature, and

+0.0015 for Mach number. The nonlinear simulation of the tunnel closed-loop control

responses confirm the adequacy of the control laws to provide the desired accuracy of

control. The simulation has covered the full envelope of the tunnel operation. The

simulation shows that changes in tunnel pressure tend to be slow due to the limited SF 6

mass flow rates. The control laws for the SF 6 mode and the controller electronic

hardware design aspects have been analyzed. Provisions exist for fine tuning the control

laws to account for any variation in system stability, control, and responses that may be

encountered during thc commissioning phase of the tunnel in 1993. Such variations are

likely due to uncertainties in modeling the tunnel process.
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Appendix

Performance of the 0.3-m TCT with the inclusion of the new heat exchanger

in Cryogenic nitrogen mode and the new Air mode

The 0.3-m TCT is being modified to operate with both cryogenic nitrogen and ambient

temperature sulfur hexaflouride (SF6) test gases. To operate with SF 6 gas, the tunnel

will be fitted with a heat exchanger in the tunnel circuit. Hence, the cryogenic mode

performance will change unless the heat exchanger is removed every time the tunnel

reverts to the cryogenic mode. The addition of a heat exchanger also provides the

possibility of a new air mode of operation for. The tunnel will require a new dry-air

supply for air mode operation. This appendix presents the estimates of changes in the

performance limits for the cryogenic mode, and the performance with the air mode of

operation with heat exchanger in place.

With the introduction of the new heat exchanger in the tunnel circuit, the circuit loss

pattern is now somewhat different. The following basic equations provide the power,

speed, and Reynolds number identities for the new cryogenic tunnel circuit, and the

identities utilize the thermophysical properties of nitrogen gas.

.]8314 "r T
Power = fia t Cp AT = 338.9 P _ m--o_ Cp b _-_ A t

Fan speed = N = 509 _ M (1 - 0.3M) rpm

M 3

('r+l)

(I+-_M2)2( ;-I)

kw

P M _ million/_
Reynolds number = R e = 63714 T1.4 (1+0.2M2)2.1

The tunnel circuit loss changes with tunnel Reynolds number. With nitrogen test gas,

the modified tunnel circuit loss factor varies with operating temperature and can be

estimated as:

r = 1.001 + 0.8765 M 2 Rf t-0.096 _ 1 + 0.160 M 2

The envelope of tunnel operations in the Cryogenic mode have been estimated using

values of Cp=l.04, "_=1.41, At=0.109, b=0.160 at 100 ° K, 0.172 at 200°K and 0.188 at
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300° K, mole=28.2, and _=0.18 m. This assumesthat the heat exchangerhas been

dried and that liquid nitrogen is sprayedinto the tunnel to control the nitrogen mass
and temperature. Figures A1, A2, and A3 provide the tunnel Power-Machnumber plot

for three typical temperaturesof 100°K,200"K,and 300_(. The plots also show the 6

atm casewith no heat exchangerin the tunnel circuit to provide an estimate of the
deterioration in peak performancedue to extra circuit lossesfrom the heat exchanger.

The plots also showsthe speedband, 3550-3650rpm, which is a singularity for the drive

system. The maximum speedlocusof 5600rpm is alsoshownin figure A3. Figures A4,
A5, and A6 show the Rcynoldsnumber-Machnumber envelopeof the tunnel at 100_K,

200°K,and 319.4"K.

In the air mode of operation, the tunnel air massis controlled through a dry air supply.
The tunnel temperature is controlled using control of the water flow rate through the

heat exchangerthereby removing the heat from tunnel flow. The estimation of power,

speed, and Reynolds number are the same as the cryogenic nitrogen case since
thermophysicalpropertiesof air areessentiallythe sameasnitrogen, for purposesof this

study. However, the powerusablein the tunnel circuit is limited by the amount of heat

that can be removedby the heat exchanger. The heatexchangeris designedto remove

550 kw of heat at 5 atm, M=0.8 and T=319.4_Awith an inlet water temperature of

303°K. Without performing heat exchangecalculations at off-design conditions, an
operationalenvelopefor the tunnel is shownin figure A6. This hasbeenestimated with

a circuit lossfactor of 0.189. Figure A6 showsthe loci of power equilibria at 550,500,

400 and 300 kw with the tunnel air temperature at 319.4°K. The capacity of the heat

exchangerto remove heat changeswith the inlet water temperature which may vary

from 289 to 306_. With the heatexchangerworking at its designedcapacity of 550kw,
the tunnel can provide Reynoldsnumber of about 10 million/0.18 m chord at about

M=0.5 and P=6 atm. It drops to 4 million/0.18 m chord at M=0.81 and 2 arm.
However, since the 0.3-m TCT flexible walls can be moved to an effectively lower

At(<0.109 m2), slightly higherReynoldsnumber performancecanbeobtained.
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Figure lOa: Simulation of Tunnel Responses

Initial conditions : P=3 atm, T=303 K, M=0.8
Set points : P=6 arm, T=319.4 K

M= 0.8

Temperature plots show in descending order Gas,Metal wall (exponential)
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Figure lob: Simulation of Tunnel Responses

Initial conditions : P=5 arm, T=303 K, M=0.8
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Initial conditions : P=3 atm, T=303 K, M=0.4
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M= 0.6 at 400 s and 0.8 at 900s

Temperature plots show in descending order Gas, Metal wall(exponential)
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Initial conditions : P=6 arm, T=303 K, M=0.4
Set points : P=6 arm, T=319.4 K

M= 0.6 at 400 s and 0.8 at 900 s

Temperature plots show in descending order Gas, Metal wall(exponential)
Exit water & Sump water (291.5K) temperatures

Gas valves correspond to + for charging & -for recovery
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Initial conditions : P=5 atm, T--303 K, M=0.8

Set points : P=5 arm, T=319.4 K
M= 0.6 at 400 s and 0.4 at 900s

Temperature plots show in:descending order Gas, Metal wall(exponential)
Exit water & Sump water (291.5K) temperatures

Gas valves correspond to + for charging & -for recovery
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49



,

4,

2,

0

311]

290

0

0.5

0

0

P,atm vs time,s

I I I

500 1000 1500

T,K vs time,s

I

-1

0.5

SF6 flow vs time,s

I I I

0 500 1000 1500

water fl vs time,s

01--'--'--"3
I I I I I I

500 1000 1500 0 500 1000 1500

M no vs time,s

l
I

2000

1000

Fan rpm vs time,s

---q
I

0
I I I I I I

500 I000 1500 0 500 1000 1500
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Initial conditions : P=1.8 atm, T=303 K, M=0.8

Set points : P=l.8 arm, T=319.4 K
M= 0.6 at 400s and 0.4 at 900s

Temperature plots show in descending order Gas, Metal wall(exponential)
Exit water & Sump water (291.5K) temperatures
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Initial conditions : P=l.8 atm, T=303 K, M=0.4

Set points : P=l.8 atm, T=315.4 K at start _ 319.4 K at 600 s
M= 0.6 at 400 s and 0.8 at 900s

Temperature plots show in descending order Gas, Metal wall(exponential)
Exit water _z Sump water (291.5K) temperatures
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Initial conditions : P=3 atm, T=303 K, M=0.5

Set points : P=3.5 atm at 400 s _: 3 atm at 900 s, T=319.4 K
M= 0.8 at 700 s

Temperature plots show in descending order Gas, Metal wall(exponential)
Exit water & Sump water (291.5K) temperatures

Gas valves correspond to + for charging & -for recovery
Valves correspond to 0 for close and 1 for full open
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Initial conditions : P=3 arm, T=303 K, M=0.5
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M= 0.8 at 700 s

Temperature plots show in descending order Gas, Metal wall(exponential)
Exit water & Sump water (291.5K) temperatures
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